МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Рубцовский институт (филиал) федерального государственного бюджетного образовательного учреждения высшего образования «Алтайский государственный университет»

Утверждено решением Ученого совета Рубцовского института (филиала) АлтГУ протокол №3 от 29.09.2025 г.

ПРОГРАММА ДОПОЛНИТЕЛЬНОГО ОБРАЗОВАНИЯ

«Основы 3D моделирования в программе Blender»

Программа	рассмотрена	и одобрена	на заседании	Ученого	совета І	убцовского
института (филиала) Алт	ГУ от 29.09.	2025 г., прото	кол № 3.		

председатель методическог	і комиссии институ	ıa.	
Заместитель директора по уч	ебной работе	Q/-	О. Г. Голева
Руководитель центра: Преподаватель _	ul.	И.С.Кра	аснослободцева
Разработчик: Преподаватель	per .	И. С. Кра	аснослободцева

Содержание

1. ОБЩАЯ ХАРАКТЕРИСТИКА ПРОГРАММЫ	4
1.1. ЦЕЛЬ РЕАЛИЗАЦИИ ПРОГРАММЫ	4
1.2. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ	4
1.3 КАТЕГОРИЯ СЛУШАТЕЛЕЙ	5
1.4 ТРУДОЕМКОСТЬ ОБУЧЕНИЯ	
1.5 ФОРМА ОБУЧЕНИЯ	5
2. СОДЕРЖАНИЕ ПРОГРАММЫ	6
2.1. УЧЕБНО-ТЕМАТИЧЕСКИЙ ПЛАН	6
2.2 СОДЕРЖАНИЕ РАЗДЕЛОВ УЧЕБНОГО КУРСА	9
3. УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ (ОРГАНИЗА	АЦИОННО-
ПЕДАГОГИЧЕСКОЙ)	13
3.1. Материально-технические условия:	13
3.2. Учебно-методическое и информационное о	обеспечение
программы	14
4. ОЦЕНКА КАЧЕСТВА ОСВОЕНИЯ ПРОГРАММЫ	
АТТЕСТАЦИИ, ОЦЕНОЧНЫЕ И МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ	1)15
5. КАДРОВЫЕ УСЛОВИЯ (СОСТАВИТЕЛИ ПРОГРАММЫ)	17

1. ОБЩАЯ ХАРАКТЕРИСТИКА ПРОГРАММЫ

1.1. Цель реализации программы

Целью реализации программы является овладение навыками начального уровня использования программы трехмерной графикой. Знакомство с 3D-редактором Blender.

Основные задачи программы:

- обеспечивать комфортное самочувствие ребенка;
- развивать творческие способности и логическое мышление детей;
- развивать образное мышление и умение выразить свой замысел;
- развивать умения творчески подходить к решению задачи;
- развивать умения излагать мысли в четкой логической последовательности, отстаивать свою точку зрения;
- анализировать ситуацию и самостоятельно находить ответы на вопросы путем логических рассуждений:
 - изучить возможности 3D-редактора Blender;
- получить навыки самостоятельного освоения новых возможностей программных средств компьютерной графики;

1.2. Планируемые результаты обучения

По окончании изучения разделов программы слушатели должны:

Знать:

- правила безопасной работы;
- возможности программных средств компьютерной графики и моделирования;
- самостоятельно решать задачи в процессе моделирования (планирование предстоящих действий, самоконтроль, применять полученные знания);

 создавать модели при помощи специальных элементов по разработанной схеме, по собственному замыслу.

Уметь:

- работать с литературой, с журналами, с каталогами, в интернете (изучать и обрабатывать информацию);
- самостоятельно решать технические задачи в процессе моделирования (планирование предстоящих действий, самоконтроль, применять полученные знания);
 - уметь критически мыслить.

Владеть:

- опытом создания трёхмерных моделей;
- навыками работы с программой Blender;
- навыками построения логических схем.

1.3 Категория слушателей

К освоению курса школьники с четвертого по шестой класс.

1.4 Трудоемкость обучения

Курс продолжительностью 48 часов, срок обучения — 24 недели, режим занятий — 2 часа в неделю.

1.5 Форма обучения

Очная, возможна реализация программы частично по индивидуальной траектории обучения.

2. СОДЕРЖАНИЕ ПРОГРАММЫ

2.1. Учебно-тематический план

		ц)	В	Аудиторные занятия, час			ģ
№ п/п	Наименование разделов и тем	Общая трудоемкость (часов, зачетных единиц	Всего аудиторных часов (зачетных единиц)	Лекции	Практические (семинарские) занятия	Лабораторные занятия	Самостоятельная работа слушателей, час.
1	2	3	4	5	6	7	8
	Знакомство с трехмерной	4		2		2	
	графикой. Знакомство с 3D-						
1	редактором Blender						
	Интерфейс графического						
2	редактора Blender. Знакомство с трехмерной	4		2		2	
2	графикой. Знакомство с 3D-	4		2		2	
	редактором Blender						
	Основные операции по						
	работе с объектами						
3	Создание моделей с	4		2		2	
	помощью 3D-редактора						
	Blender.						
	Создание модели « Капля						
4	воды» Создание моделей с	2				2	
+	Создание моделей с помощью 3D-редактора						
	Blender.						
	Создание модели						
	«Молекула воды»						
5	Создание моделей с	2				2	
	помощью 3D-редактора						
	Blender. Экструдирование						
	объектов.						
	Создание модели «Стол»						

	T				
6	Создание моделей с	2		2	
	помощью 3D-редактора				
	Blender. Экструдирование				
	объектов.				
	Создание модели				
	«Самолет»				
7	Знакомство с трехмерной	4	2	2	
	графикой. Знакомство с 3D-				
	редактором Blender				
	Изучение приемов работы с				
	модификаторами,				
	текстурами и материалами.				
	Создание моделей с	2		2	
8	помощью 3D-редактора				
	Blender. Логический				
	модификатор. Применение				
	операций пересечение,				
	объединение, разность к				
9	различным объектам. Создание моделей с	2		2	
9		2		2	
	помощью 3D-редактора Blender. Модификатор				
	«Отражение».				
10	Создание модели «Гантели»	2		2	
10	Создание моделей с	2		2	
	помощью 3D-редактора				
	Blender. Изменение				
	материала.				
	Создание модели				
11	«Зеркальной поверности»	2		2	
11	Создание моделей с			<i>L</i>	
	помощью 3D-редактора				
	Blender. Изменение				
	текстуры.				
	Создание сцены «Морской				
12	пейзаж» Создание моделей с	4		4	
12		4		4	
	помощью 3D-редактора				
	Blender. Изменение				

	материала и текстуры. Создание сцены «Вазы»					
13	Знакомство с трехмерной графикой. Знакомство с 3D-редактором Blender Изучение приемов создания	4		2	2	
	анимации в Blender.					
14	Создание анимации с использованием временной шкалы	2			2	
15	Создание моделей с помощью 3D-редактора Blender. Создание сцены «Движение	4			4	
	планеты»					
16	Создание моделей с помощью 3D-редактора Blender. Создание сцены «Маятник часов»	4			4	
итого		48	48	10	38	

2.2 Содержание разделов учебного курса

2.2.1. Содержание разделов учебной дисциплины

Tema 1. Знакомство с трехмерной графикой. Знакомство с 3Dредактором Blender. Интерфейс графического редактора Blender.

Знакомство с пунктами меню программы. Изучить расположение элементов: камера, лампа, оси координат. Понятие рендеринга.

Tema 2. Знакомство с трехмерной графикой. Знакомство с 3Dредактором Blender. Основные операции по работе с объектами

Навигация с помощью клавиатуры и мыши. Выделение объектов. Преобразования объектов.

Тема 3. Создание моделей с помощью **3D**-редактора **Blender**. Создание модели «Капля воды»

Создание 3D-модели «Капля воды».

Тема 4. Создание моделей с помощью **3D**-редактора Blender. Создание модели «Молекула воды»

Создание 3D-модели «Молекула воды».

Tema 5. Создание моделей с помощью 3D-редактора Blender. Экструдирование объектов. Создание модели «Самолет»

Применение инструмент Extrude. Создание 3D-модели «Самолет» на примере объекта КУБ.

Tema 6. Создание моделей с помощью 3D-редактора Blender. Экструдирование объектов. Создание модели «Стол»

Подразделение (subdivide) объектов. Применение инструмент subdivide.. Создание 3D-модели «Стол» на примере объекта КУБ.

Tema 7. Знакомство с трехмерной графикой. Знакомство с 3Dредактором Blender. Изучение приемов работы с модификаторами, текстурами и материалами.

Модификаторы в Blender. Добавление, удаление, применение к различным объектам.

- Тема 8. Создание моделей с помощью 3D-редактора Blender. Логический модификатор. Применение операций пересечение, объединение, разность к различным объектам.
- Тема 9. Создание моделей с помощью 3D-редактора Blender. Логический модификатор. Применение операций пересечение, объединение, разность к различным объектам.

Понятия пересечение, объединение, разность. Особенности и различия.

Tema 10. Создание моделей с помощью 3D-редактора Blender. Модификатор «Отражение». Создание модели «Гантели»

Применение модификатора «Отражение». Панель модификатора. Позиционирование центральной точки. Создание модели «Гантели».

Tema 11. Создание моделей с помощью 3D-редактора Blender. Изменение материала. Создание модели «Зеркальной поверности»

Изменение цвета. Шейдеры в Blender. Вкладки блик, отражение,

Tema 12. Создание моделей с помощью 3D-редактора Blender. Изменение текстуры. Создание сцены «Морской пейзаж»

Добавление текстур. Загрузка текстур.

Tema 13. Создание моделей с помощью 3D-редактора Blender. Изменение материала и текстуры. Создание модели «Вазы»

Создание модели «Вазы» с использованием материалов и текстур.

Тема 14. Создание анимации с использованием временной шкалы

Виды анимации в Blender. Редакторы ключей. Способы воспроизведения анимации.

Tema 15. Создание моделей с помощью 3D-редактора Blender. Создание сцены «Движение планеты»

Создание сцены «Движение планеты»

Tema 16. Создание моделей с помощью 3D-редактора Blender. Создание сцены «Маятник часов»

Создание сцены «Маятник часов»

2.2.2. Лабораторный практикум

Лабораторная работа 1. Интерфейс графического редактора Blender.

Лабораторная работа 2. Основные операции по работе с объектами. Сочетания горячих клавиш.

Лабораторная работа 3. Создание модели «Капля воды»

Лабораторная работа 4. Создание модели «Молекула воды»

Лабораторная работа 5. Создание модели «Стол»

Лабораторная работа 6. Создание модели «Самолет»

Лабораторная работа 7. Изучение приемов работы с модификаторами, текстурами и материалами.

Лабораторная работа 8. Применение операций пересечение, объединение, разность к различным объектам.

Лабораторная работа 9. Создание модели «Гантели»

Лабораторная работа 10. Создание модели «Зеркальной поверности»

Лабораторная работа 11. Создание сцены «Морской пейзаж»

Лабораторная работа 12-13. Создание сцены «Вазы»

Лабораторная работа 14. Изучение приемов создания анимации в Blender.

Лабораторная работа 15. Создание анимации с использованием временной шкалы

Лабораторная работа 16-17. Создание сцены «**Движение планеты**» **Лабораторная работа 18-19.** Создание сцены «**Маятник часов**»

3. УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ (ОРГАНИЗАЦИОННО-ПЕДАГОГИЧЕСКОЙ)

3.1. МАТЕРИАЛЬНО-ТЕХНИЧЕСКИЕ УСЛОВИЯ:

Учебные аудитории ДЛЯ проведения занятий всех видов (дисциплинарной, междисциплинарной и модульной подготовки); групповых и консультаций, текущего контроля промежуточной индивидуальных И аттестации. Для самостоятельной работы и подготовки к занятиям используются помещения, оснащенные компьютерной техникой с доступом к сети «Интернет» и электронной информационно-образовательной среде института.

Специальные аудитории укомплектованы специализированной мебелью и техническими средствами обучения, служащими для предоставления учебной информации.

Лабораторные занятия проводятся в компьютерных классах, а также в лабораториях.

Требования к программному обеспечению учебного процесса:

- Windows 7 Professional Service Pack 1;
- Microsoft Office Professional Plus 2010;
- 7-Zip;
- Windows 10 Education;
- Foxit Reader;
- Blender 2.79

3.2. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ

ОБЕСПЕЧЕНИЕ ПРОГРАММЫ (учебно-методические материалы (учебники, учебные пособия, периодические издания, раздаточный материал и т.д.)

Основная литература:

- 1. Бегишев, И. Р. Робототехника и право: библиографический указатель / И. Р. Бегишев. Москва: Проспект, 2024. 120 с. ISBN 978-5-392-36460-2. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/280760
- 2. Титенок, А. В. Основы робототехники: учебное пособие / А. В. Титенок. Вологда: Инфра-Инженерия, 2024. 236 с. ISBN 978-5-9729-0872-1. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/281237

Базы данных, Интернет-ресурсы, информационно-справочные и поисковые системы

- 1. Электронная библиотечная система «Консультант студента» [Электронный ресурс]. М.: ООО «Политехресурс». Режим доступа: http://www.studentlibrary.ru/.
- 2. Электронно-библиотечная система «Университетская библиотека Online» [Электронный ресурс]. М.: Издательство «Директ-Медиа». Режим доступа: http://www.biblioclub.ru.
- 3. Электронная библиотечная система Алтайского государственного университета [Электронный ресурс]. Барнаул. Режим доступа: http://elibrary.asu.ru/.
- 4. Образовательная платформа «Юрайт» [Электронный ресурс]. М.: ООО «Электронное изд-во Юрайт». Режим доступа: https://www.biblioonline.ru/about.
- 5. Электронно-библиотечная система «Znanium.com» [Электронный ресурс]. М.: ООО «Научно-издательский центр Инфра-М». Режим доступа: http://znanium.com/.
- 6. Поисковые системы: Google, Yandex, Rambler. 7. Научная электронная библиотека eLIBRARY.RU [Электронный ресурс]: информационно-аналитический портал в области науки, технологии, медицины и образования. М.: ООО Научная электронная библиотека. Режим доступа: https://elibrary.ru/projects/subscription/rus_titles_open.asp.
- 8. Электронно-библиотечная система Издательство «Лань» [Электронный ресурс]. СПб.: Издательство Лань. Режим доступа: https://e.lanbook.com/.

4. ОЦЕНКА КАЧЕСТВА ОСВОЕНИЯ ПРОГРАММЫ (ФОРМА АТТЕСТАЦИИ, ОЦЕНОЧНЫЕ И МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ)

Оценка качества освоения программы проводится в формах внутреннего мониторинга и внешней независимой оценки (организации могут на добровольной основе). Приводятся конкретные формы и процедуры текущего, промежуточного (при наличии) и итогового контроля. С целью оценивания содержания и качества учебного процесса, а также отдельных преподавателей со стороны слушателей и работодателей проводится анкетирование, получение отзывов.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Практическое задание ««Молекула воды»»

- 1). Создать новый файл, удалить из сцены куб.
- 2). Добавить на сцену цилиндр, выполнив действия. *Добавить Поверхность Цилиндр*.
- 3). Уменьшить цилиндр по всем осям до 0.3 единиц. Для этого нажать S, затем, удерживая Ctrl, двигать мышью пока значения в левом нижнем углу 3D-окнане станут равны 0.3 или установить точный размер в окне слева. Зафиксировать изменения, щелкнув левой клавишей мыши.
 - 4). Установить просмотр в режиме вид спереди.
- 5). Увеличить цилиндр по оси Z. Для этого нажать S, затем Z, и, удерживая Ctrl, двигать мышью пока значения в левом нижнем углу3D-окнане станет равно 7.5. Зафиксировать изменения, щелкнув левой клавишей мыши.
- 6). Повернуть цилиндр на 90 градусов по оси Y. Для этого нажать R, затем Y, и, удерживая Ctrl, двигать мышью пока значения в левом нижнем углу 3D-окнане станет равно 90. Зафиксировать изменения, щелкнув левой клавишей мыши.
- 7). Продублировать цилиндр. Копию переместить по оси X так, чтобы два цилиндра касались друг друга. Для этого следует выполнить действия: Объект Дублировать. Возможно также использование клавиш: дублирование выполняется сочетанием клавиш Shift + D, далее клавиша X для выполнения сдвига, затем выполнить перемещение с помощью мыши. Результат показан на Puc. 1.

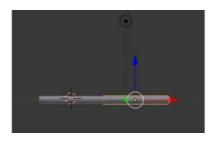


Рис. 1 – Два совмещенных цилиндра

8). Т.к. в молекуле воды угол связи Н-О-Нравен 104.5 градусов, то первый цилиндр нужно развернуть по оси Y на 75.5 градусов (180104.5). Для этого используем клавиши R, далее Y и мышью выполнить поворот. Подкорректировать угол наклона также можно в окне слева. Далее двигая стрелки совместить концы цилиндров, как показано на Рис. 2

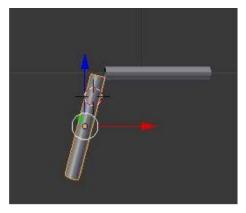


Рис. 2 – Результат поворота и сдвига

- 9). Разместить 3D-курсорв точке соединения двух цилиндров.
- 10). Добавить сферу (она будет служить моделью атома кислорода).
- 11). Два раза продублировать сферу, а дубликаты перенести на концы цилиндров. Уменьшить размеры дубликатов до 0.8 (клавиша S и движение мышью). Результат показан Рис. 3.

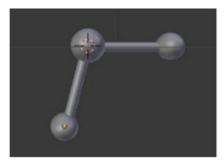


Рис. 3— Результат добавления дубликатов в изображение

12). Объединить все элементы модели. Для этого следует выделить все

объекты и выполнить действия Объект -Объединить.

- 13). Переключиться на вид из камеры.
- 14). С помощью инструментов перемещения и поворота откорректировать размещение модели на сцене.
- 15). Сохранить файл. Выполнить рендеринг. Результат моделирования показан на Рис. 4.

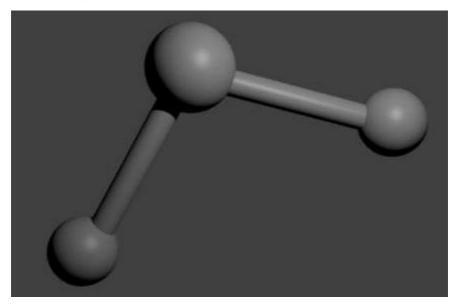


Рис. 4 – Рендеринг сцены модели молекулы воды

Практическое задание «Маятник часов»

1). Создайте заготовку маятника (Рис. 5) из двух объектов: сферы и цилиндра.

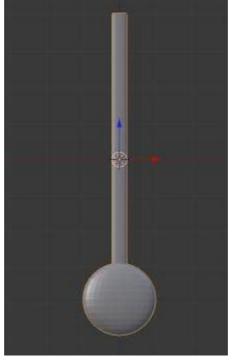


Рис. 5 – Заготовка маятника часов

- 2). Выделите оба объекта и объедините их в один объект. Центр объекта после этого будет расположен посередине.
- 3). Необходимо перенести центра объекта в верхнюю его часть. Для этого выполните следующие действия: Объект/ Преобразование/

Опорную точку к 3D-курсору. Эта команда создаст новый центр объекта в месте, указанном курсором.

- 4). Выберите инструмент Перемещение и для поля Y задайте значение -10. Маятник после этого должен отклониться влево.
- 5). Установите на панели Временная шкала первый кадр в качестве активного.
- 6). Нажмите клавишу «I» в окне 3D-види выберите пункт Перемещение. На панели временной шкалы отобразится новый ключ.

- 7). Установите в окне Временная шкала значение равное 25 для активного кадра.
- 8). Измените в поле Перемещение Y панели свойств значение на -10. Маятник качнется в правую сторону.
 - 9). Установите ключ Перемещение для этого кадра.
- 10). Финальный ключ будет располагаться для кадра 50. Измените активный кадр.
- 11). Введите значение 10 для координаты У группы Перемещение. Маятник переместится обратно влево.
 - 12). Установите ключ и для этой позиции.
- 13). Попробуйте проиграть анимацию. Если маятник совершит одиночное качание из стороны в сторону, то заготовка сделана правильно.
 - 14). Чтобы анимация выполнялась циклически необходимо в

Редакторе Графов выбрать кривую Y Euler Rotation и выполнить действия Канал/ Режим экстраполяции/ Зациклить. Это действие создаст копии образца и размножит его до бесконечности. Теперь маятник будет спокойно качаться из стороны в сторону неограниченное время.

5. КАДРОВЫЕ УСЛОВИЯ (СОСТАВИТЕЛИ ПРОГРАММЫ)

Программа реализуется преподавательским составом Института, а также ведущими специалистами предприятий и организаций.