МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Рубцовский институт (филиал) федерального государственного бюджетного образовательного учреждения высшего образования «Алтайский государственный университет»

Утверждено решением Ученого совета Рубцовского института (филиала) АлтГУ протокол №3 от 29.09.2025 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ «Математический анализ»

ПРОГРАММЫ ПРОФЕССИОНАЛЬНОЙ ПЕРЕПОДГОТОВКИ

«ПЕДАГОГИКА И МЕТОДИКА ПРЕПОДАВАНИЯ МАТЕМАТИКИ В ШКОЛЕ»

Программа рассмотрена и одобрена на заседании Ученого совета Рубцовского института (филиала) АлтГУ от 29.09.2025 г., протокол № 3.

Председатель методическ	сой комиссии института	:
Заместитель директора по у	учебной работе	О. Г. Голева
Руководитель центра:	. /	
Преподаватель	hot .	_ И.С.Краснослободцева
Разработчик: Старший преподаватель	Jeeces	_ С. М. Палкина

Содержание

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ	. 4
2. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ	.4
3. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ	. 6
3.1. УЧЕБНО-ТЕМАТИЧЕСКИЙ ПЛАН	. 6
4. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННО	ÞΕ
ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ	. 8
5. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИН	Ы
10	
ФОНД ОЦЕНОЧНЫХ СРЕДСТВ1	l 1
1. ТИПОВЫЕ КОНТРОЛЬНЫЕ ЗАДАНИЯ ИЛИ ИНЫЕ МАТЕРИАЛЬ	Ы,
НЕОБХОДИМЫЕ ДЛЯ ОЦЕНКИ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТО	B
ОБУЧЕНИЯ ПО ЛИСПИПЛИНЕ	12

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целью реализации программы является формирование профессиональных компетенций по использованию базовых понятий математического анализа в курсе школьной математики, показать взаимосвязь математического анализа с дисциплинами естественнонаучного цикла.

Для достижения поставленной цели выделяются задачи:

- формирование понимания значимости математической составляющей в естественнонаучном образовании;
- формирование представления о роли и месте математики в мировой культуре;
- ознакомление с системой понятий, используемых для описания важнейших математических моделей и математических методов, и их взаимосвязью;
- выработка умения самостоятельно расширять свои математические знания и проводить математический анализ прикладных задач;
 - знание методов дифференциального и интегрального исчисления.

2. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

По окончании изучения разделов программы слушатели должны:

знать

- цели и задачи, содержание и особенности курса математического анализа в школе;
- основные требования к математической подготовке учащихся по годам обучения и критерии оценки их знаний и уровней интеллектуального развития по математическому анализу;
- методы решения задач в курсе начал математического анализа (10– 11 кл.), в том числе повышенной сложности;
- основные понятия и теоремы анализа, с точки зрения заложенных в них фундаментальных математических и физических идей;
- связи между отдельными разделами курса математического анализа и дисциплинами естественнонаучного цикла;

уметь:

 находить производные, вычислять пределы, интегралы, формулировать и доказывать теоремы, применять методы математического анализа для решения математических задач, построения и анализа моделей механики, физики и естествознания, самостоятельно решать классические

задачи;

- использовать основные понятия математического анализа и применять их для доказательства простых теорем и решения задач;
- применять методы решения задач в курсе начал математического анализа (10–11 кл.), в том числе повышенной сложности;
- использовать в своей будущей профессиональной деятельности связи между отдельными разделами курса математического анализа и дисциплинами естественнонаучного цикла;

владеть:

— методами дифференцирования и интегрирования функций одной и нескольких переменных, методами исследования функций, навыками практического использования современного математического инструментария для решения и анализа задач физики и естествознания.

3. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

3.1. Учебно-тематический план

1,№ п/п	Наименование разделов и тем	Максимальная нагрузка студентов, час.	аудит	Практические фосминарские) ми	Лабораторные совы в работы ра	Самостоятельная работа студентов, час.
1	2	3	4	5	6	7
Разде	гл1. Последовательности. Функці	uu				
Раздел 1	1. Введение в математический анализ. Множество действительных чисел. Комплексные числа и действия с ними 2. Числовые последовательности. Предел числовой последовательности. Функция. Предел функции в точке и на бесконечности. Непрерывность функции.	3	1	1		2
Torvi	Сравнение бесконечно малых функций. Эквивалентные функции ций контроль	Тест				
	ции контроло гл2. Дифференциальное исчислені		ии одно	й перем	енной	
Раздел 2	3. Определение производной. Правила дифференцирования. Производные основных элементарных функций. Дифференциал. Определение и свойства.	6	1	1		4
P _ε	4. Основные теоремы дифференцирования. Формула Тейлора с остаточным членом в форме Пеано и в форме	6	1	1		4

	Пограника Варнамания					
	Лагранжа. Разложение					
	основных элементарных					
	функций в ряд Тейлора					
	5. Исследование функции с					
	помощью производной и	6	1	1		4
	построения ее графика					
	щий контроль		ование			
Разде	ел3. Дифференциальное исчислені	іе функц	ии неск	ольких і	переменных	Ç
	6. Функции нескольких					
	переменных. Предел и					
	непрерывность функции.	3		1		2
	Частные производные. Полный					
п 3	дифференциал					
Раздел 3	7. Экстремумы функций двух					
)a3	переменных. Необходимое и					
_	достаточное условия	_				
	экстремума. Наибольшее и	5	1			4
	наименьшее значение функции					
	в области					
T	I.	Тасти		1	ı	l
Lekvi	шии контроль	IPUMI	ование			
	щий контроль ел 4. Интегральное исчисление	Тестир	ование			
	ел 4. Интегральное исчисление	Тестир	ование			
	ел 4. Интегральное исчисление 8. Интегрирование функций	тестир	ование			
	ел 4. Интегральное исчисление 8. Интегрирование функций одной переменной.			1		2
	8. Интегральное исчисление 8. Интегрирование функций одной переменной. Неопределенный интеграл и его	4	1	1		2
	8. Интегрирование функций одной переменной. Неопределенный интеграл и его свойства. Основные методы			1		2
Разде	8. Интегрирование функций одной переменной. Неопределенный интеграл и его свойства. Основные методы интегрирования			1		2
Разде	8. Интегрирование функций одной переменной. Неопределенный интеграл и его свойства. Основные методы интегрирования 9. Определенный интеграл.			1		2
Разде	8. Интегрирование функций одной переменной. Неопределенный интеграл и его свойства. Основные методы интегрирования 9. Определенный интеграл. Определение и свойства.			1		2
Разде	8. Интегрирование функций одной переменной. Неопределенный интеграл и его свойства. Основные методы интегрирования 9. Определенный интеграл. Определение и свойства. Геометрические приложения			1		2
	8. Интегрирование функций одной переменной. Неопределенный интеграл и его свойства. Основные методы интегрирования 9. Определенный интеграл. Определение и свойства. Геометрические приложения определенного интеграла.	4	1	1		
Разде	8. Интегрирование функций одной переменной. Неопределенный интеграл и его свойства. Основные методы интегрирования 9. Определенный интеграл. Определение и свойства. Геометрические приложения определенного интеграла. Несобственные интегралы с			1		2
Разде	8. Интегрирование функций одной переменной. Неопределенный интеграл и его свойства. Основные методы интегрирования 9. Определенный интеграл. Определение и свойства. Геометрические приложения определенного интеграла. Несобственные интегралы с бесконечными пределами и от	4	1	1		
Разде	8. Интегрирование функций одной переменной. Неопределенный интеграл и его свойства. Основные методы интегрирования 9. Определенный интеграл. Определенный интеграл. Геометрические приложения определенного интеграла. Несобственные интегралы с бесконечными пределами и от неограниченной функции.	4	1	1		
Разде	8. Интегрирование функций одной переменной. Неопределенный интеграл и его свойства. Основные методы интегрирования 9. Определенный интеграл. Определенный интеграл. Спределение и свойства. Геометрические приложения определенного интегралы с бесконечными пределами и от неограниченной функции. Приложения определенного	4	1	1		
Р аздел 4	8. Интегрирование функций одной переменной. Неопределенный интеграл и его свойства. Основные методы интегрирования 9. Определенный интеграл. Определенный интеграл. Спределение и свойства. Геометрические приложения определенного интегралы с бесконечными пределами и от неограниченной функции. Приложения определенного интеграла	3	1	1		
Разде 4 Гекул	8. Интегрирование функций одной переменной. Неопределенный интеграл и его свойства. Основные методы интегрирования 9. Определенный интеграл. Определенный интеграл. Определение и свойства. Геометрические приложения определенного интегралы с бесконечными пределами и от неограниченной функции. Приложения определенного интеграла	4 3	1 1	1		
Разде 4 Текул Текул Текул	8. Интегрирование функций одной переменной. Неопределенный интеграл и его свойства. Основные методы интегрирования 9. Определенный интеграл. Определенный интеграл. Спределение и свойства. Геометрические приложения определенного интегралы с бесконечными пределами и от неограниченной функции. Приложения определенного интеграла	3	1 1	1		

4. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература

- 1. Кытманов, А. М. Математический анализ: учебник для вузов / А. М. Кытманов. Москва: Издательство Юрайт, 2024. 607 с. (Высшее образование). ISBN 978-5-534-19160-8. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/556072.
- 2. Шагин, В. Л. Математический анализ. Базовые понятия: учебное пособие для вузов / В. Л. Шагин, А. В. Соколов. Москва: Издательство Юрайт, 2024. 245 с. (Высшее образование). ISBN 978-5-534-00884-5. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/537307
- 3. Чебышёв, П. Л. Математический анализ / П. Л. Чебышёв; ответственный редактор И. М. Виноградов; составитель А. О. Гельфонд. Москва: Издательство Юрайт, 2024. 393 с. (Антология мысли). ISBN 978-5-534-10151-5. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/540083.

Дополнительная литература

- 1. Капкаева, Л. С. Математический анализ: теория пределов, дифференциальное исчисление: учебное пособие для вузов / Л. С. Капкаева. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2024. 246 с. (Высшее образование). ISBN 978-5-534-04898-8. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/539687
- 2. Никитин, А. А. Математический анализ. Углубленный курс: учебник и практикум для вузов / А. А. Никитин, В. В. Фомичев. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2024. 456 с. (Высшее образование). ISBN 978-5-534-19274-2. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/556225

Базы данных, Интернет-ресурсы, информационно-справочные и поисковые системы

- 1. Электронная библиотечная система «Консультант студента» [Электронный ресурс]. М.: ООО «Политехресурс». Режим доступа: http://www.studentlibrary.ru/.
- 2. Электронно-библиотечная система «Университетская библиотека Online» [Электронный ресурс]. М.: Издательство «Директ-Медиа». Режим доступа: http://www.biblioclub.ru.
- 3. Электронная библиотечная система Алтайского государственного университета [Электронный ресурс]. Барнаул. Режим доступа:

http://elibrary.asu.ru/.

- 4. Образовательная платформа «Юрайт» [Электронный ресурс]. М.: ООО «Электронное изд-во Юрайт». Режим доступа: https://www.biblioonline.ru/about.
- 5. Электронно-библиотечная система «Znanium.com» [Электронный ресурс]. М.: ООО «Научно-издательский центр Инфра-М». Режим доступа: http://znanium.com/.
 - 6. Поисковые системы: Google, Yandex, Rambler.
- 7. Научная электронная библиотека eLIBRARY.RU [Электронный ресурс]: информационно-аналитический портал в области науки, технологии, медицины и образования. М.: ООО Научная электронная библиотека. Режим доступа: https://elibrary.ru/projects/subscription/rus_titles_open.asp.
- 8. Электронно-библиотечная система Издательство «Лань» [Электронный ресурс]. СПб.: Издательство Лань. Режим доступа: https://e.lanbook.com/.

5. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Учебные аудитории для проведения занятий всех видов (дисциплинарной подготовки); групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Для самостоятельной работы и подготовки к занятиям используются помещения, оснащенные компьютерной техникой с доступом к сети «Интернет» и электронной информационно образовательной среде института.

Специальные аудитории укомплектованы специализированной мебелью и техническими средствами обучения, служащими для предоставления учебной информации. Лабораторные занятия проводятся в компьютерных классах, а также в кабинете программирования и баз данных.

Требования к программному обеспечению учебного процесса:

- Windows 7 Professional Service Pack 1;
- Microsoft Office Professional Plus 2010;
- 7-Zip;
- Windows 10 Education;
- Foxit Reader.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

1. ТИПОВЫЕ КОНТРОЛЬНЫЕ ЗАДАНИЯ ИЛИ ИНЫЕ МАТЕРИАЛЫ, НЕОБХОДИМЫЕ ДЛЯ ОЦЕНКИ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

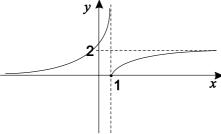
ТЕСТОВЫЕ ЗАДАНИЯ

Перечень заданий / вопросов

Раздел 1. Последовательности. Функции

Задание 1. Пусть существуют пределы: $\lim_{x \circledast a} f(x), \lim_{x \circledast a} g(x)$, тогда

справедливо утверждение:


$$1 \cdot \lim_{x \otimes a} (f(x) + g(x)) = \lim_{x \otimes a} f(x) + \lim_{x \otimes a} g(x)$$

$$2 \cdot \lim_{x \cdot \otimes a} ((f(x)/g(x)) = \lim_{x \cdot \otimes a} f(x)/\lim_{x \cdot \otimes a} g(x)$$

3.
$$\lim_{x \otimes a} (f(x)g(x)) = g(a) \lim_{x \otimes a} f(x)$$

$$4 \cdot \lim_{x \in \mathcal{A}} (kg(x)) = kg(a)$$

Задание 2. Функция f(x) задана графиком:

Верно утверждение:

$$\lim_{x \to +\infty} f(x) = 2$$

$$2. \lim_{x \to 1+0} f(x) = 0$$

3.
$$\lim_{x \to 1-0} f(x) = 0$$

$$4. \lim_{x \to -\infty} f(x) = 2$$

Задание 3. Функцию f(x) является бесконечно малой в нуле, если:

1.
$$f(x) = x^2 - 7x$$

2.
$$f(x) = 4x^3 - 8$$

3.
$$f(x) = x \sin x$$

4.
$$f(x) = x \cos x$$
.

Задание 4. Функция f(x) является бесконечно большой при x=2, если:

1.
$$f(x) = \frac{2}{x+2}$$

2.
$$f(x) = \frac{3}{x-2}$$

3.
$$f(x) = ctg(x-2)$$

4.
$$f(x) = \frac{x+3}{x^2 - 2x}$$

Задание 5. Предел $\lim_{x\to 3} \frac{2}{x-3}$ равен:

$$\infty$$

$$4. +\infty$$

Задание 6.Предел $\lim_{x\to 3} (2x^2 - 3x)$ равен:

Задание 7.Предел $\lim_{x\to 2} \left(\frac{x^2 - 7x + 10}{x^2 - 5x + 6} \right)$ равен:

Задание 8. Предел $\lim_{x\to\infty} \frac{6x^5 - 3x^3 + 4}{3x^5 + 2x^4 + 1}$ равен:

Задание 9.Предел $\lim_{x\to 0} \frac{4\sin 3x}{\sin 2x}$ равен:

Задание 10.Предел $\lim_{x\to 0} \frac{\sqrt{1+6x}-1}{x}$ равен:

Задание 11. Справедливо утверждение:

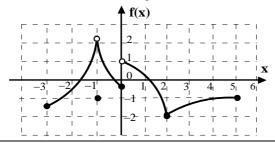
- 1. Если последовательности x_n и y_n монотонны и неограничены, то последовательность $x_n + y_n$ неограничена.
 - 2. Если последовательности x_n и y_n монотонны и $y_n \neq 0$, то

последовательность $\frac{x_n}{y_n}$ монотонна.

- 3. Всякая строго возрастающая последовательность целых чисел имеет член, больший 10.
- 4. Если $\{x_n\}$ и $\{y_n\}$ возрастающие последовательности отрицательных чисел, то последовательность $\{x_ny_n\}$ убывает.

Задание 12. Значение a , при котором $\lim_{x \to -\infty} \frac{\sqrt{x^2 + a}}{ax + 1} = -1$ равно:

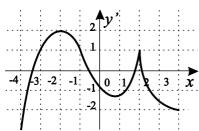
- 1. 1.
- 2. -1
- 3. 2.
- 4. $\frac{1}{2}$.


Задание 13. Дана функция $f(x) = \frac{2x-1}{x^2-4}$. Справедливо утверждение:

- 1. Функция f(x) непрерывна в каждой точке области определения.
- 2. Функция f(x) имеет ровно две точки разрыва.
- 3. Функция f(x) имеет точку устранимого разрыва.
- 4. Функция f(x) ограничена на промежутке [-1;1].

Перечень заданий / вопросов

Раздел 2. Дифференциальное исчисление функции одной переменной


Задание 1. Функция f(x) задана на отрезке [-3:5] графиком:

Верно утверждение:

- 1. уравнение f(x) = -1 имеет четыре корня
- 2. при любом значении x выполняется неравенство f(x) < 2
- 3. на отрезке [-3;-1] функция f(x) возрастает
- 4. множеством значений функции f(x) является отрезок [-2;2]

Задание 2. Производная $y^{'}$ функции y = f(x) задана на отрезке [–4;4] графиком:

Верно утверждение:

- 1. На интервале (–4;0) имеется только одна точка экстремума функции f(x)
 - 2. на отрезке [-2;-1] функция f(x) возрастает
 - 3. На интервале (-3;-1) функция f(x) имеет точку перегиба
 - 4. На интервале (-1;0) функция f(x) выпукла вверх
 - 5. на отрезке [-1;1.2] функция f(x) имеет локальный минимум
 - 6. при любом значении x выполняется неравенство $f(x) \le 2$
 - 7. На интервале (-3;-1) функция f(x) имеет экстремум
 - 8. На интервале (–3;3) функция $\ f(x)$ дважды дифференцируема

Задание 3. Функция f(x) не имеет точек перегиба, если:

1.
$$f(x) = 3x^4 - 5x^2$$

2.
$$f(x) = 7x^5 + 8x^3$$

$$3. \ f(x) = \sin x$$

4.
$$f(x) = x^4 + 2x^2$$
.

Задание 4. Производная функции $4x^3 + 2x^2 - 1$ равна:

1.
$$12x^2 - 1$$
;

2.
$$4x^2 + 4x$$
;

3.
$$12x^2 + 4x - 1$$
;

4.
$$12x^2 + 4x$$

Задание 5. Производная функции $5x^3 \sin x$ равна:

- 1. $15x^2 \cos x$
- 2. $15x^2 \sin x + 5x^3 \cos x$
- 3. $15x^2 + \cos x$
- 4. $5x^2 \sin x + 15x^2 \cos x$

Задание 6. Производная функции $\sin^3(7x)$ равна:

- $1.21x\sin^2 x\cos(7x)$
- $2.21x\sin^2 x\cos x$
- $3.3x\sin(7x)\cos x$
- $4.21x\sin^2(7x)\cos(7x)$

Задание 7. Производная функции $4x^3 - 2x$ в точке x = -1 равна:

- 1.2
- 2. 2
- 3.10
- 4.12.

Задание 8. Дифференциал функции $3x^3 + 2x$ в точке x = -2 равна:

- $2 38\Delta x$
- 3.-28
- $4.-28\Delta x$.

Задание 9. Уравнение асимптоты при $x \rightarrow \infty$ к графику функции

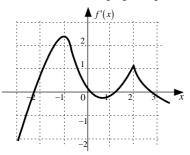
$$\frac{6x^2 - 5x}{2x - 1}$$
 имеет вид:

- 1. 3x+4
- 2.3x
- 3. 6x-4
- 4. 3x-1.

Задание 10. Точка перегиба функции $4x^3 - 3x^2$ есть:

- 1. x = 0
- 2. x = 1/4
- 3. x = 3/4
- 4. x = 1/2.

Задание 11. Область возрастания функции $2x^2 - 16x + 5$ есть:

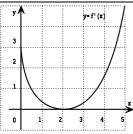

1.x < 4

- 2. x>4
- 3. x = 4
- 4. *x* любое.

Задание 12. Область убывания функции $f(x) = 3x^2 - 18x$ есть:

- 1.*x*<3
- 2. *x*>3
- 3. x = 3
- 4. *x* любое.

Задание 13. Дан график производной f'(x) некоторой функции f(x):


Справедливо утверждение:

- 1. на промежутке (-1;0) функция f(x) возрастает
- 2.
на промежутке (-2;0) график функции f(x) имеет точку перегиба
 - 3. в точке -1 функция f(x) имеет максимум
 - 4.на промежутке (2;3) функция f(x) убывает

Задание 14. Функции f(x) и g(x) определены и дифференцируемы на всей числовой оси. Известно, что $f(1)=0,\ f'(2)=3,\ g(1)=2,$ g'(1)=2. Тогда производная функции f(g(x)) в точке 1 равна

- 1. 1
- 2. 2
- 3. 3
- 4. 6

Задание 15. Дан график производной f'(x) некоторой функции f(x), заданной на промежутке [0;5].

Справедливо утверждение:

- $1.\Phi$ ункция f(x) выпукла вниз.
- $2. \Phi$ ункция f(x) строго возрастает.
- 3. Функция f(x) не имеет корней.
- $4.\Gamma$ рафик функции f(x) имеет точку перегиба.

Задание 16. Функция f(x) определена на промежутке (0;2). Справедливо утверждение:

- 1. Если f(x) строго возрастает на промежутке (0;1) и строго убывает на промежутке (1;2), то 1 является точкой максимума этой функции.
- 2. Если функция f(x) дифференцируема при всех $x \neq 1$, причем f'(x) < 0 при 0 < x < 1 и f'(x) > 0 при 1 < x < 2, то 1 является точкой минимума функции f(x).
- 3. Если f(x) непрерывна на промежутке (0;2), строго убывает на промежутке (0;1) и строго возрастает на промежутке (1;2), то 1 является точкой минимума этой функции.
- 4. Если функция f(x) дифференцируема при всех $x \neq 1$ и имеет положительную вторую производную при всех $x \neq 1$, то 1 является точкой минимума функции f(x).

Перечень заданий / вопросов

Раздел 3. Дифференциальное исчисление функции нескольких переменных

Задание 1.

Как называется предел отношения приращения $\Delta_x z$ функции z = f(x, y) к приращению x переменной x при стремлении x к нулю?

- 1) Условный экстремум
- 2) Градиент
- Частный дифференциал
- 4) Производная по направлению
- 5) Частная производная

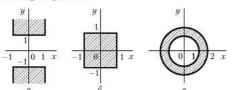
Задание 2.

Как называется выражение
$$\nabla z = (z'_x, z'_y)?$$

- 1) Условный экстремум
- 2) Градиент
- Частный дифференциал
- 4) Производная по направлению
- 5) Частная производная

Задание 3.

Что определяется выражением $z_x'\cos\alpha + z_y'\cos\beta$


- 1) Условный экстремум
- 2) Градиент
- Частный дифференциал
- Производная по направлению
- 5) Частная производная

Задание 4

К чему относится определение: существует окрестность такая, что для всех точек M(x, y), принадлежащих этой окрестности и удовлетворяющих уравнению связи g(x, y) = C, выполняется неравенство $f(x, y) < f(x_0, y_0)$ $[f(x, y) > f(x_0, y_0)]$

- 1) Условный экстремум
- 2) Градиент
- Частный дифференциал
- 4) Производная по направлению
- 5) Частная производная

Дана функция двух переменных $z = \sqrt{1 - x^2} + \sqrt{y^2 - 1}$. Тогда область определения этой функции изображена на рисунке...

- 1) a
- 2)6
- 3) 8
- ни на одном из них

Задание 6

Частная производная по
$$y$$
 функ-
ции $z = \frac{1}{3}x^3 - xy - 3y^2 + 11x + 7y$ рав-
на... 1) $z_y' = x^2 - y + 11$
2) $z_y' = -xy - 6y + 18$
3) $z_y' = x^2 - x + 7$
4) $z_y' = -x - 6y + 7$

1)
$$z_y' = x^2 - y + 11$$

2)
$$z_y' = -xy - 6y + 18$$

3)
$$z'_{y} = x^{2} - x + 7$$

$$4) z_y' = -x - 6y + 7$$

5)
$$z_y' = -x - 3y + 11$$

Задание 7

Частная производная по x функ- 1) $z'_{y} = 3x^{2} + 6x - 8$ ции $z = x^3 + 3x^2 - 5xy - 4y^2 + 15y - 8$ 2) $z'_x = 3x^2 + 6x - 5y$ равна...

1)
$$z' = 3x^2 + 6x - 8$$

$$2) z_x' = 3x^2 + 6x - 5y$$

3)
$$z'_r = 6x^2 + 6x - 13y + 15$$

4)
$$z_x' = x^3 + 3x^2 - 5xy$$

Задание 8

Частная производная по y функ- 1) $z'_{y} = 10x^{4}y +$ ции $z = x^5y^2 + 2x^3y^3 - 3x^2 - 7y^2 + 5x + 19$ равна...

1)
$$z'_y = 10x^4y + 18x^2y^2 - 11xy$$

2)
$$z_y' = x^4 y + 2x^2 y^2 - 14y$$

3)
$$z_y' = 2x^5y + 6x^3y^2 - 14y$$

4)
$$z'_y = 2x^5y + 18x^2y^2 - 14y$$

5)
$$z'_y = 10x^5y + 18x^3y^3 - 11xy$$

Частная производная по
$$x$$
 функции $z = 3x^2y^3 + 2x^2y^2 - 6y^5 + 3x^2 + 25$ равна...

1)
$$z'_{x} = 9x^{2}y^{2} + 4x^{2}y - 30y$$

2) $z'_{x} = 18xy^{2} + 8xy - 18xy^{4}$
3) $z'_{x} = 6xy^{3} + 4xy^{2} + 6x$
4) $z'_{x} = 3x^{2}y^{3} + 2x^{2}y^{2} + 6x$

Задание 10

Максимум функции z = xy при условии x + y = 6 равен...

Задание 11

$$L(x, y, \lambda) = f(x, y) + \lambda(g(x, y) - C)$$
 является функцией... 2) Лагранжа 3) Лобачевского 4) Коши

- 1) Лежандра

- 5) Лопиталя

Задание 12

Задание 12
Если
$$U = \cos(2x^2 + y + z^3)$$
, то значение U_y' в точке $M(0, \frac{\pi}{4}, 0)$ равно...
3) 0

2)
$$\frac{\sqrt{2}}{2}$$

Задание 13

Если $U = e^{(2x - 3y + z^2)}$, то значение U'_{ν} в точке M(1, 1, 1) равно...

Задание 14

Найти частную производную

$$z'_x = \frac{\partial z}{\partial x}$$
 в точке $(2, -3)$ функции $z = \frac{2y+1}{x^2+6}$

Перечень заданий / вопросов

Раздел 4. Интегральное исчисление

Задание 1.

Неопределенный интеграл — 1) числовой это... интервал

- 2) уравнение
- 3) совокупность функций
- 4) число
- 5) функция

Залание 2.

Найдите интеграл $\int x^2 3^{x^3} dx$

1)
$$\frac{1}{2}\sin 2x + C$$

$$2) \frac{1}{20} \ln \left| \frac{2x+5}{2x-5} \right| + C$$

$$\begin{vmatrix} 20 & +2x - 3 + \\ 3) - \frac{1}{20} \ln \left| \frac{2x + 5}{2x - 5} \right| + C \\ 4) \frac{3^{x^3}}{3} + C \\ 5) \frac{3^{x^3}}{3 \ln 3} + C \end{vmatrix}$$

4)
$$\frac{3^{x^3}}{3} + C$$

5)
$$\frac{3^{x^3}}{3\ln 3} + C$$

Задание 3.

$$[\int f(x)dx]' = \dots$$

1)
$$f(x)dx$$

3)
$$f(x) + C$$

Множество первообразных функции
$$f(x) = e^{3x}$$
 имеет вид...

1)
$$-\frac{1}{3}e^{3x} + C$$

2)
$$\frac{1}{3}e^{3x} + C$$

3)
$$e^{3x} + C$$

4)
$$3e^{3x} + C$$

Множество первообразных функции $f(x) = e^{2x}$ имеет вид...

1)
$$-\frac{1}{2}e^{2x} + C$$

2)
$$e^{2x} + C$$

2)
$$e^{2x} + C$$

3) $\frac{1}{2}e^{2x} + C$

4)
$$2e^{2x} + C$$

Задание 6

Интеграл $\int 7e^{7x}dx$ равен...

1)
$$7e^{7x} + C$$

1)
$$7e^{7x} + C$$

2) $\frac{1}{7}e^{7x} + C$
3) $e^{7x} + C$
4) $7e^{x} + C$

3)
$$e^{7x} + C$$

4)
$$7e^x + C$$

Задание 7

В неопределенном интеграле $\int \frac{x}{\sqrt{x}-1} dx$ введена новая переменная $t = \sqrt{x}$. Тогда интеграл примет вид...

1)
$$2\int \frac{t^3}{t-1}dt$$

$$2)\int \frac{t^3}{2(t-1)}dt$$

$$3) \int \frac{t^2}{t^2 - 1} dt$$

4)
$$2\int (t^2-1)dt$$

Правильную рациональную дробь
$$\frac{2x+1}{(x+1)^2(x^2+4x+5)^2}$$
 можно представить в виде суммы простейших дробей...

1)
$$\frac{A}{x+1} + \frac{Bx+C}{(x+1)^2} + \frac{D}{x^2+4x+5} + \frac{Ex+F}{(x^2+4x+5)^2}$$
2) $\frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{Cx+D}{x^2+4x+5} + \frac{Ex+F}{(x^2+4x+5)^2}$
3) $\frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{C}{x^2+4x+5} + \frac{D}{(x^2+4x+5)^2}$
4) $\frac{1}{x+1} + \frac{1}{(x+1)^2} + \frac{5}{x^2+4x+5} + \frac{2}{(x^2+4x+5)^2}$

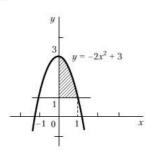
Определенный интеграл – 1) числовой интервал это...

- 2) уравнение
- 3) совокупность функций
- 4) число
- 5) функция

Задание 10

Формула

$$\int_{b}^{a} f(x)dx = F(x)\Big|_{a}^{b} = F(b) - F(a)$$


называется формулой...

- 1) Коши-Буняковского
- Ньютона Лейбница
- 3) Фробениуса Перрона
- 4) Больцано Коши
- 5) Бойля Мариотта

Если f(x) определена в точке a, 1) F(a)2) a 3) a^{2} 4) 1 то чему равен $\int f(x)dx$? 5)0

Задание 12

Площадь фигуры, изображенной на рисунке, определяется интегралом...

1)
$$\int_{1}^{1} (-2x^{2} + 3) dx$$
2)
$$\int_{0}^{1} (2 - 2x^{2}) dx$$
3)
$$\int_{0}^{1} (2x^{2} - 2) dx$$
4)
$$\int_{0}^{3} (3 - 2x^{2}) dx$$

Задание 13

Определенный интеграл

$$\int\limits_{1}^{\pi/2} \frac{\sin\frac{x}{2}}{\cos\frac{x}{2}} \text{ равен...}$$

1)
$$1 + \ln 2$$

$$3) 1 + \ln 5$$

Задание 14

Определенный интеграл

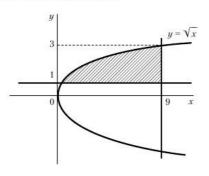
$$\int\limits_{1}^{\pi/2} \frac{\sin\frac{x}{2}}{\cos\frac{x}{2}} \text{ равен...}$$

1)
$$1 + \ln 2$$

$$3) 1 + \ln 5$$

Задание 15

Согласно теореме о среднем ес- (1) f(c)(b-a)ли f(x) непрерывна на отрезке [a, b], [2] abf(c)то найдется точка c[a, b] такая, что (a - c)(b - c)


$$\int_{L}^{a} f(x)dx = \dots$$

1)
$$f(c)(b-a)$$

2)
$$abf(c)$$

3)
$$(a-c)(b-c)$$

Площадь заштрихованной части фигуры, изображенной на чертеже, задана интегралом... $1) \int_{1}^{9} (1-x^2) dx$

1)
$$\int_{1}^{9} (1 - x^{2}) dx$$
2)
$$\int_{9}^{1} (\sqrt{x} - 1) dx$$
3)
$$\int_{1}^{9} (x^{2} - 1) dx$$
4)
$$\int_{0}^{9} (\sqrt{x} - 1) dx$$
5)
$$\int_{0}^{9} (1 - \sqrt{x}) dx$$

ВОПРОСЫ К ЭКЗАМЕНУ

Перечень заданий /вопросов

1.Вопросы для проверки уровня обученности ЗНАТЬ

- 1. Множество действительных чисел.
- 2. Числовые последовательности. Предел числовой последовательности. Переход к пределу в неравенствах. Существование предела монотонной ограниченной последовательности.
- 3. Функция. Способы задания функции. График функции, преобразования графиков функций.
 - 4. Предел функции в точке по Коши и по Гейне.
 - 5. Предел функции на бесконечности.
 - 6. Односторонние пределы.
 - 7. Бесконечно большие и бесконечно малые функции.
 - 8. Свойства предела функции.
- 9. Непрерывность функции в точке. Основные теоремы о непрерывных функциях.
 - 10. Точки разрыва, их классификация.
- 11. Определение производной. Геометрический и механический смысл производной.
- 12. Дифференциал. Определение и свойства. Применение дифференциала в приближенных вычислениях.
 - 13. Теоремы Ферма, Ролля, Коши, Лагранжа. Правило Лопиталя.
- 14. Функции нескольких переменных. Предел и непрерывность функции.
- 15. Частные производные. Геометрический смысл частных производных.
 - 16. Первообразная. Неопределенный интеграл и его свойства.
 - 17. Табличные интегралы.
- 18. Определенный интеграл. Определение и свойства. Формула Ньютона-Лейбница.
 - 19. Геометрические приложения определенного интеграла.
- 20. Несобственные интегралы с бесконечными пределами и от неограниченной функции. Признаки сходимости несобственных интегралов.

2.Вопросы для проверки уровня обученности УМЕТь

1. Комплексные числа и действия над ними. Изображение комплексных чисел на плоскости. Модуль и аргумент. Тригонометрическая и показательная формы комплексного числа. Формула Эйлера. Корни из комплексных чисел.

- 2. Замечательные пределы.
- 3. Сравнение бесконечно малых функций. Эквивалентные функции.
- 4. Правила дифференцирования. Производные основных элементарных функций.
 - 5. Производная сложной и обратной функций.
- 6. Дифференцирование параметрически заданных функций и функций заданных неявно.
- 7. Формула Тейлора с остаточным членом в форме Пеано и в форме Лагранжа. Разложение основных элементарных функций в ряд Тейлора.
- 8. Признаки возрастания и убывания функции. Точки экстремума функции. Необходимые и достаточные условия экстремума функции.
- 9. Нахождение наибольшего и наименьшего значений функции на отрезке.
- 10. Исследование выпуклости функции. Точки перегиба. Асимптоты. Общая схема исследования функции и построения ее графика.
- 11.Полный дифференциал. Применение полного дифференциала в приближенных вычислениях.
- 12. Дифференцирование сложной функции. Производная функции, заданной неявно.
 - 13. Частные производные высших порядков. Формула Тейлора.
 - 14. Производная по направлению. Градиент.
- 15. Экстремумы функций двух переменных. Необходимое и достаточное условия экстремума. Наибольшее и наименьшее значения функции в области.
 - 16. Замена переменной и интегрирование по частям.
 - 17. Интегрирование рациональных дробей.
 - 18. Интегрирование тригонометрических функций.
 - 19. Интегрирование иррациональных функций.

3.Задания для проверки уровня обученности ВЛАДЕТЬ

1. Вычислить пределы:

a.
$$\lim_{x \to -1} (x^3 + 5x^2 + 6x + 1)$$

$$\partial. \lim_{x\to 0} \frac{1-\sqrt{x+1}}{x}$$

$$\delta. \lim_{x \to -1} \frac{x^3 + 1}{x^2 - 1}$$

$$e. \lim_{x \to \infty} \left(1 + \frac{3}{x} \right)^x$$

$$e. \lim_{x \to 3} \frac{x^2 - 2x - 3}{x^2 - 9}$$

$$\mathcal{H}$$
. $\lim_{x\to 0} \frac{\sin 17x}{8x}$

$$2. \lim_{x \to \infty} \frac{4x^2}{x^2 - 1}$$

3.
$$\lim_{x\to 1} \frac{5x^2-3x-2}{x^26x+1}$$

2. Вычислить предел функции с помощью правила Лопиталя

$$a)\lim_{x\to 0}\frac{\cos(\pi\cdot x/2)}{x+1}$$

$$\partial$$
) $\lim_{x\to -2} \frac{arctg(x+2)}{(x+2)}$

$$6) \lim_{x \to 0} \frac{\sqrt[3]{1 - 6x} - 1 + 2x}{x^2}$$

$$e$$
 $\lim_{x\to 0} \frac{\sqrt{1+4x}-1-2x}{x^2}$

$$e)\lim_{x\to 0}\frac{\sqrt{4+x}-2}{x}$$

$$\mathcal{H}(y) = \lim_{x \to 0} \frac{4^{\sin x} - 1}{\sin 2x}$$

$$\varepsilon) \lim_{x \to 3} \frac{\left(x-3\right)^2}{\sin^2\left(x-3\right)}$$

3)
$$\lim_{x \to 3} \frac{(x-3)^2}{\sin^2(x-3)}$$

- 3. Найти предел функции $\lim_{x\to a} \frac{3x^2+5x-8}{2x^2+3x-5}$ при различных значениях $a: -2:1:+\infty$.
- 4. Доказать, что:

a)
$$\lim_{x \to \infty} \frac{2x^2 + 5x - 3}{x + 3} = -7$$
;

6)
$$\lim_{x \to -1} \frac{7x^2 + 8x + 1}{x + 1} = -6$$
;

B)
$$\lim_{x\to 3} \frac{x^2 - 4x + 3}{x - 3} = 2$$

5. Составить уравнение касательной и нормали к данной кривой в точке с абсциссой x_0 .

a)
$$y = (4x - x^2)/4$$
, $x_0 = 2$;

6)
$$y = \sqrt{4 - 2x^2}$$
, $x_0 = -1$;

в)
$$y = \sqrt{\frac{4 - x^2}{2}}$$
 , $x_0 = \sqrt{2}$

6. Найти дифференциал dy.

a)
$$y = \sqrt{1+2x} - \ln(x + \sqrt{1+2x});$$

6)
$$y = e^x \cos x$$
;

$$\mathbf{B}) \ y = 5^{x^2} \arccos\left(\frac{1}{x}\right);$$

- 7. Вычислить приближенно с помощью дифференциала $y = \sqrt[3]{x^3 + 7x}, \ x = 1{,}012;$
- 8. Найти производную функцию по определению производной: а) $y = \sqrt{2x-3}$; б) $y = \frac{4}{3x+5}$.

9. Найти производную

a)
$$y = \frac{2(3x^3 + 4x^2 - x - 2)}{15\sqrt{1+x}}$$
;

6)
$$y = x - \ln(2 + e^x + 2\sqrt{e^{2x} + e^x + 1});$$

B)
$$y = \sin \sqrt{3} + \frac{1}{3} \frac{\sin^2 3x}{\cos 6x}$$
;

$$\Gamma) y = \left(arctg \ x \right)^{\left(\frac{1}{2}\right) \ln arctg \ x};$$

$$\begin{cases} x = \frac{3t^2 + 1}{3t^3} \\ y = \sin\left(\frac{t^3}{3} + t\right). \end{cases}$$

e)
$$b^3x^2 + a^3y^2 = a^3b^2$$

10. Найти производную второго порядка y''_{xx} от функции, заданной

параметрически
$$\begin{cases} x = \cos 2t \\ y = 2 \sec^2 t \end{cases}$$

11. Найти наибольшее и наименьшее значения функции на заданных отрезках

a)
$$y = x^2 + \frac{16}{x} - 16$$
, [1,4];

б)
$$y = \sqrt{100 - x^2}$$
 на $[-6,8]$;

B)
$$y = \sqrt[5]{2(x+1)^2(5-x)} - 2$$
 Ha $[-3;3]$.

12. Провести полное исследование функции и построить графики

a)
$$y = (x^3 + 4)/x^2$$
;

6)
$$y = \frac{x}{\sqrt{x^2 - 4}}$$
;

B)
$$y = 4x^3 + 9x^2 - 12x - 15$$
;

$$r) y = \frac{(12 - 3x^2)}{(x^2 + 12)}.$$

13. Найти вторые частные производные функции

a)
$$u = z \cdot e^{x^2 y}$$

$$6) z = \ln\left(y + \sqrt{x^2 + y^2}\right)$$

$$\mathbf{B})u = x^2 \sin \sqrt{y-z}$$

$$\Gamma$$
) $u = xye^z$

14. Вычислить приближенно с помощью дифференциала.

a)
$$y = \sqrt[3]{x}$$
, $x = 26,46$;

6)
$$y = x^{11}$$
, $x = 1,021$;

B)
$$y = \frac{1+\sqrt{x}}{1-\sqrt{x}}, x_0 = 4;$$

15. Вычислить
$$z = \frac{(2-3i)(3+4i)-2(5i-1)}{2+i}$$
, указать вещественную и

мнимую часть этого комплексного числа

16. Решите уравнения в комплексных числах:

a)
$$x^2 - 4x + 8 = 0$$
; 6) $x^2 + ix + 6 = 0$.

- 17. Изобразите множество точек z комплексной плоскости, удовлетворяющих условию: $z \cdot \bar{z} = (2+i)^2 + \frac{17}{1+A}$:
- 18. Найдите все действительные значения а, для которых система уравнений $\begin{cases} |z+3ai|=1\\ |z-a|=3 \end{cases}$ имеет хотя бы одно решение
- 19. Найти неопределенные интегралы:

a)
$$\int \frac{arctg \, x}{1+x^2} dx$$

$$\int \sin^4 x \cos^5 x dx$$

$$\int (4-3x)e^{-3x}dx$$

$$\int \frac{x^3 - 3x^2 - 12}{(x - 4)(x - 2)x} dx$$

$$\int \frac{dx}{3\sin x + \cos x}$$

20. Вычислить определенные интегралы.

a)
$$\int_{0}^{1} x^{2} e^{-x} dx$$

a)
$$\int_{0}^{1} x^{2} e^{-x} dx$$
6)
$$\int_{0}^{1} \frac{(x^{2} + 1) dx}{(x^{3} + 3x + 1)^{3}}$$

B)
$$\int_{0}^{16} \sqrt{256 - x^2} dx$$

$$\Gamma \qquad \int_{0}^{\sin 1} \frac{(\arcsin x)^{2} + 1}{\sqrt{1 - x^{2}}} dx$$

$$\int_{-1}^{0} \frac{tg(x+1)}{\cos^2(x+1)} dx$$

21. Вычислить несобственный интеграл

a)
$$\int_{0}^{1} \frac{x dx}{\sqrt{1-x^2}}$$

$$6) \int_{0}^{+\infty} \frac{arctg^{3}x}{1+x^{2}} dx$$

$$\mathrm{B})\int\limits_0^{+\infty}\frac{e^xdx}{\left(1+e^x\right)^2}$$

22. Вычислить площади фигур, ограниченных

a)
$$y = (x-2)^3, y = 4x-8.$$

6)
$$y^2 = 4x, x^2 = 4y$$
.

23. Вычислить площади фигур ограниченных линиями, заданными уравнениями

$$\int x = 4\sqrt{2}\cos^3 t$$

a)
$$\begin{cases} x = 4\sqrt{2}\cos^3 t \\ y = 2\sqrt{2}\sin^3 t \end{cases}$$

$$x = 2(x \ge 2)$$

$$\int x = 8\sqrt{2}\cos^3 t$$

$$\begin{cases} x = 8\sqrt{2}\cos^3 t \\ y = \sqrt{2}\sin^3 t \end{cases}$$
$$y = 4(y \ge 4)$$

a) $r = 4\cos 3\varphi, r = 2(r \ge 2)$

6)
$$r = \sin \varphi, r = \sqrt{2} \cos \left(\varphi - \frac{\pi}{4} \right) \left(\frac{-\pi}{4} \le \varphi \le \frac{3\pi}{4} \right)$$

25. Вычислить длины дуг кривых, заданных уравнениями прямоугольной системе координат

a)
$$y = \ln x, \sqrt{3} \le x \le \sqrt{15}$$

6)
$$y = 2 + chx, 0 \le x \le 1$$

26. Вычислить объемы тел, ограниченных поверхностями

a)
$$\frac{x^2}{9} + y^2 = 1, z = y, z = 0 (y \ge 0)$$

6)
$$\frac{x^2}{3} + \frac{y^2}{4} = 1, z = y\sqrt{3}, z = 0 (y \ge 0).$$